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Abstract. Recent image manipulation localization and detection tech-
niques usually leverage forensic artifacts and traces that are produced by
a noise-sensitive filter, such as SRM and Bayar convolution. In this pa-
per, we showcase that different filters commonly used in such approaches
excel at unveiling different types of manipulations and provide comple-
mentary forensic traces. Thus, we explore ways of merging the outputs
of such filters and aim to leverage the complementary nature of the arti-
facts produced to perform image manipulation localization and detection
(IMLD). We propose two distinct methods: one that produces indepen-
dent features from each forensic filter and then fuses them (this is re-
ferred to as late fusion) and one that performs early mixing of different
modal outputs and produces early combined features (this is referred to
as early fusion). We demonstrate that both approaches achieve competi-
tive performance for both image manipulation localization and detection,
outperforming state-of-the-art models across several datasets1.

Keywords: Image forensics · Image manipulation localization · Image
manipulation detection · Multi-modal fusion

1 Introduction

Editing and manipulating digital media has gotten increasingly easier and more
accessible in recent years. Recent advances in image editing software, as well as
deep generative models such as Generative Adversarial Networks (GANs) [15,36]
and diffusion models [20, 32], facilitate producing manipulations that are often
imperceptible to the human eye and are widely available, even to potentially
malicious users. The widespread use of smartphones and social networks also
enables the spread of such manipulated media at a rapid pace. As a result, such
edited images can cause social problems when used as evidence to support disin-
formation campaigns and stories or mislead the public by obfuscating important
content from news, resulting in diminished trust. Therefore, techniques for image
manipulation detection and localization, as part of complete toolboxes for media
verification such as [24], are now needed more than ever.
⋆ Corresponding author
1 Code is publicly available at https://github.com/IDT-ITI/MMFusion-IML
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Image forgery localization and detection are tasks the media forensics field
has been working on for many years. Early works typically focused on a specific
type of manipulation such as splicing [23], copy-move [3] or removal/inpainting
[17]. More recently, deep-learning-based solutions of increasing robustness are
proposed that are able to recognize multiple different types of manipulations
[2,9,11,14,18,26,29,33]. In order to be able to perform manipulation localization
in a semantic-agnostic manner these models need to suppress image contect to
reveal forensic artifacts. Most approaches achieve this by applying a high-pass
filter to extract noise maps [2, 11, 26, 29, 33]. The most popular high-pass filters
used are the ones proposed in the Steganalysis Rich Model (SRM) [8], utilized
in a wide variety of works [11, 16, 19, 29, 37], while the Bayar convolution [1] is
also used in a multitude of approaches [2, 11, 29, 33] and NoisePrint++ is used
in a more recent model [9].

We hypothesize that those different forensic filters actually produce arti-
facts of complementary forensic capabilities. NoisePrint [4], and its successor
NoisePrint++ [9] produce artifacts that relate to camera model and editing his-
tory, thus displaying limited performance for copy-move images (Section 4.3). On
the other hand, SRM [8] filters can identify edges and boundaries without rely-
ing on camera or compression/editing artifacts, but their predetermined nature
makes them vulnerable to adversarial attacks, whereas the Bayar convolution [1]
learns the manipulation traces directly from data, proving more robust against
malicious attacks. In this work we explore ways to expand existing state-of-the-
art IMLD approaches to support multiple auxiliary forensic filters as inputs. We
start with TruFor [9] as our baseline and propose utilizing NoisePrint++, SRM,
and Bayar convolution as inputs auxiliary to the RGB image. We propose two
different approaches: a late-fusion paradigm that extracts features from each
modality separately, and an early-fusion paradigm that mixes the multi-modal
features by early convolutional blocks. Our main contributions in this paper are
summarized as follows:

– We compare the efficacy of different forensic filters, namely SRM, Bayar conv
and NoisePrint, as inputs for deep networks performing forgery localization.

– We propose two distinct approaches for combining the outputs of different
forensic filters for the purpose of image manipulation localization and detec-
tion.

– Both methods achieve state-of-the-art performance across five datasets by
effectively leveraging and combining forensic cues from various input modal-
ities.

2 Related Work

Image forensics methods have been based for a long time on detecting incon-
sistensies on low-level semantic-agnostic artifacts such as compression or inter-
nal camera filter artifacts. These artifacts are usually revealed by suppressing
the image content through high-pass filtering, producing a noise-sensitive view.
In recent times, various filters for noise extraction have been integrated into
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deep learning models to address the challenge of image manipulation localiza-
tion. RGB-N [37] is a model that uses both RGB images and SRM filters to-
gether with a faster R-CNN [22] module to perform forgery detection with a
bounding box, while Constrained R-CNN [33] uses a trainable noise extractor,
namely Bayar convolution, to perform the same task. ManTraNet [29] integrates
both SRM filters and Bayar convolution within a VGG-based architecture, while
SPAN [11] enhances this approach by modeling relationships between image
patches through a pyramid of local self-attention blocks. Chen et al. [2] also use
the Bayar convolution together with the RGB image in a late fusion paradigm
that is trained through multi-scale supervision. NoisePrint [4] is a noise extrac-
tor proposed by Cozzolino et al. that is trained in a self-supervised manner to
extract camera-specific artifacts and is expanded in TruFor [9], where it is used
jointly with RGB images in a dual-branch CMX [34] architecture.

Our approach innovatively explores various strategies for combining the out-
puts of diverse noise extractors, leveraging their complementary capabilities to
develop a robust end-to-end image forgery detection localization model.

3 Methods

3.1 Encoder-Decoder Architecture

Our goal is to extend existing encoder-decoder-based architectures to be able to
use multiple forensic filters (SRM [8], Bayar convolution [1], NoisePrint++ [9])
in tandem, so as to produce more robust representations for the task of Image
Manipulation Localization and Detection. To this end we adopt the TruFor [9]
architecture, showcased in Fig. 1, that consists of an encoder, an anomaly de-
coder, a confidence decoder, and a forgery detector; and we follow its two-phase
training regime for anomaly localization and detection, respectively. The encoder
follows the dual-branch architecture proposed in [34], comprising of 4 stages of
Multi-Head Self Attention (MHSA) blocks [31] that produce feature maps f i

r of
different scales: H

2i+1 × W
2i+1 × Ci, where H and W are the spatial dimensions

of the input and Ci is the channel dimension of the output at scale i. The two
MHSA blocks’ outputs in each stage are rectified through a Cross-Modal Feature
Rectification Module (FRM) [34] that exploits the interactions between the two
input modalities (RGB and NoisePrint in the case of TruFor). The FRM uses
features from both modalities to produce weighted channel- and spatial-wise
feature maps that are residually added for both modalities to perform channel-
and spatial-wise rectification. The two sets of feature maps are then combined
using a Feature Fusion Module (FFM) [34] whose outputs f i at each scale are
combined to produce the encoder output f . The FFM consists of an informa-
tion exchange stage, where a cross-attention mechanism exchanges information
between modalities and produces two sets of mixed feature maps, and a fusion
stage where the feature maps are merged into a single output through a resid-
ual MLP module that uses 1 × 1 convolutions. The Decoders are simple MLP
decoders proposed in [31].
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Fig. 1. Full encoder-decoder architecture

Utilizing this architecture one can combine RGB images with an auxiliary
forensic modality to perform Image Manipulation Localization. In [9] Guillaro et
al. use their own feature extractor NoisePrint++, however a multitude of other
forensic filters’ outputs like Bayar convolution [1] or SRM [8] can be utilized.
All those filters are analyzed in Section 3.2. We propose two different ways of
extending the encoder architecture to multiple auxiliary modal inputs: a late
fusion paradigm, where each auxiliary modality is combined with RGB inputs
separately using a dual-branch architecture [34] (Section 3.3), and an early fusion
paradigm where auxiliary modalities are combined early before being utilized as
input to the dual-branch encoder together with the RGB inputs (Section 3.4).

3.2 Auxiliary modalities

For both approaches, we use the outputs of three forensic filters: NoisePrint++,
SRM, and Bayar convolution as inputs together with RGB images.

NoisePrint++ In [4] Cozzolino et al. propose Noiseprint, a CNN-based model
designed to extract camera-model-based artifacts from RGB images while sup-
pressing image content. In [9] they expand their approach, namely NoisePrint++,
to be able to recognize and extract artifacts related to the editing history of an
image (e.g. compression, resizing, gamma correction). NoisePrint++ is trained in
a supervised contrastive manner [12]: a batch of images is provided, from which
patches are extracted from different locations. Then the patches go through
different editing pipelines. Patches extracted from the same source image, the
same location, and with the same editing history are considered positive samples,
while others are considered negative. For our approach we use NoisePrint++ as
a pretrained feature extractor.

SRM Another way to suppress the image content and highlight forensic traces
and noise is through static high-pass filters, the most common of which are
the ones proposed for producing residual maps for the Steganalysis Rich Model
(SRM) [8]. Out of the 30 high-pass filters proposed, we used the 3 most commonly
used in the literature, e.g. in [11,29,37], which are displayed in Figure 4 of [37].
They will be referred to as SRM filters.
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Bayar Convolution In contrast to using static high-pass filters for noise ex-
traction Bayar et al. [1] propose the constrained convolutional layer as a noise
extractor that adaptively learns manipulation traces from data. We use the con-
strained convolutional layer as an extra noise feature extractor and refer to it as
Bayar convolution. For both multi-modal fusion approaches the Bayar convolu-
tional layer is pretrained alone in a dual branch CMX encoder (Section 4.3) and
then used with its weights frozen.

3.3 Late Fusion

For the late fusion method we extract the auxiliary representations rnoiseprint,
rsrm, rbayar of the RGB image x from the NoisePrint++, SRM and Bayar filters
respectively. Then the output of each auxiliary filter is fed together with the
original RGB input into a dual-branch CMX encoder to produce 4-scale feature
maps f i

mod = Emod(x, rmod),mod ∈ {noiseprint, srm, bayar}, i ∈ {1, 2, 3, 4} as
shown in Fig. 2.

Fig. 2. Late Fusion with weight sharing
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At each scale the outputs of the 3 encoders are concatenated to produce the
final output f of the encoder. We use the same decoder architecture as in TruFor
for the anomaly and confidence decoders. Like other multi-modal approaches this
approach is prone to overfitting and the “modality imbalance” problem [7, 27],
where different modalities converge and overfit at different rates, thus hindering
joint optimization. To tackle this we make the weights of the modules along
the RGB branch shared across all 3 encoders to increase regularization. We also
employ Dropout before the anomaly decoder as the complete encoder is rather
large and the simple MLP decoder is prone to overfitting.

3.4 Fusion by early convolutions

For the early fusion method we again extract the same auxiliary representa-
tions: rnoiseprint, rsrm, rbayar of the RGB image x. The inputs are then passed
through our novel early fusion module Fe to produce the auxiliary features
fa = Fe(rnoiseprint, rsrm, rbayar). The early fusion module consists of 3 indepen-
dent convolutional blocks, one for each auxiliary modality, and one final convolu-
tional block that performs feature mixing. The convolutional blocks are good at
early visual processing, resulting in a more stable optimization [30], thus aiding
in mixing the features from different modalities smoothly. The mixed features
fa and RGB image x are used as input for a dual-branch CMX encoder [34],
in the same manner as in TruFor. This is a particularly lightweight approach
to expanding the TruFor architecture to handle multiple auxiliary modalities
as it does not increase the number of parameters significantly (68.9M params
compared to TruFor’s 68.7M).

Fig. 3. Fusion by early convolutions
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Convolutional Block The convolutional block consists of four 3× 3 convolu-
tions followed by a 1× 1 convolutional layer to resize the output to 3 channels.
There is a batch normalization (BN) and a ReLU layer after each 3× 3 convolu-
tional layer. The output channels for the 3 × 3 convolutional layers are [24, 48,
96, 192].

4 Experiments

4.1 Experimental Setup

Training We follow the training procedure proposed by Guillaro et al. [9]:
first, we jointly train the encoder and anomaly decoder and finally, we train
the confidence decoder and the forgery detector, while the encoder and anomaly
decoder are kept frozen. For both training phases we use the datasets used by
Kwon et al. [14], and sample an equal number of images from each one for every
epoch. Training datasets are summarized in Table 1.

Number of Images
Dataset Real Fake

Casiav2 [6] 7,491 5,105
IMD2020 [21] 414 2,010

FantasticReality [13] 16,592 19,423
cm_coco [14] - 200,000

bcm_coco [14] - 200,000
bcmc_coco [14] - 200,000

sp_coco [14] - 200,000

Table 1. Details for training datasets

Number of Images
Dataset Real Fake

Coverage [28] 100 100
Columbia [10] 183 180
Casiav1+ [6] 800 921

DSO-1 [5] 100 100
CocoGlide [9] 512 512

Table 2. Details for testing datasets

Testing For testing, we evaluate our model on five datasets: Coverage [28],
Columbia [10], Casiav1+2 [6] and DSO-1 [5], which are widely used in the rele-
vant literature, and CocoGlide, a diffusion-based manipulation dataset proposed
recently by Guillaro et al [9].

Metrics For localization performance we follow most previous works and report
average pixel-level performance using the F1 metric. We use a fixed threshold
of 0.5, as setting a best threshold per test dataset [14] or even per image [9]
like some previous works is not realistic in practical scenarios where the ground
truth is not available, thus leading in exaggerated performance estimates. For
2 Casiav1+ is a modification of the Casiav1 dataset proposed by Chen et al. [2] that

replaces authentic images that also exist in Casiav2 with images from the COREL
[25] dataset to avoid data contamination.
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detection we use image-level Area Under Curve (AUC), which is a metric that
does not require selecting a threshold, and balanced accuracy, the arithmetic
mean of sensitivity and specificity, with a threshold once again set to 0.5.

Implementation All models are implemented in PyTorch and trained on an
NVIDIA RTX 4090 or 3090 GPU, using an effective batch size of 24 for 100
epochs. Physical batch size ranged from 4 to 8 depending on the model and an
effective batch size of 24 was reached by utilizing gradient accumulation. We
use a Dropout rate of 0.3 for both multi-modal methods. The MHSA modules
were initialized with ImageNet-pretrained weights as proposed in [34, 35]. We
utilized an SGD optimizer with an initial learning rate of 0.005, momentum of
0.9, weight decay of 0.0005 and a polynomial learning rate schedule. For training
augmentations we followed Guillaro et al. [9] and resized the images in the [0.5-
1.5] range, performed random cropping of size 512×512 and JPEG compression
with a random Quality Factor QF∈[30,100].

4.2 Comparisons

We compare our methods with recent approaches for Image Manipulation Lo-
calization. Following Guillaro et al. we consider methods with open source mod-
els provided and we exclude models that use part of our testing datasets for
training to avoid bias. Overall we compare with TruFor [9], CAT-Netv2 [14],
ManTraNet [29], PSCC-Net [18], SPAN [11], Constrained R-CNN [33], MVSS-
Net [2]. Results are presented in Table 3.

Model Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
TruFor .600 .859 .737 .523 .930 .729

CAT-Netv2 .381 .859 .752 .434 .584 .602
ManTraNet .317 .508 .180 .516 .412 .387
PSCC-Net .473 .604 .520 .515 .458 .514

SPAN .235 .759 .112 .298 .233 .327
CR-CNN .391 .631 .481 .447 .289 .448

MVSS-Net .514 .729 .528 .486 .358 .523
Early Fusion .663 .888 .784 .553 .863 .750
Late Fusion .641 .864 .775 .574 .899 .751

Table 3. Comparison for localization performance. The metric is average pixel-level F1.
The best and second-best results for each dataset are presented in bold and underlined
respectively. Results for all models except for the proposed ones are taken from [9].

During our experiments, we replicated the training of TruFor for the purposes
of our ablation study and we discovered a large variance in Localization results
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between training runs. For this purpose, we train our networks 4 times and re-
port average localization performance in terms of average pixel F1 in Table 4.
Both our multi-modal fusion approaches showcase state-of-the-art performance,
being either the best or second-best model for every dataset. Especially for the
Coverage dataset that contains only copy-move forgeries, our best approach sur-
passes the previous best, TruFor, by 6.3%. The only dataset where we can’t
achieve state-of-the-art performance is DSO-1 where our best method is 3%
behind TruFor.

Model Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
TruFor (retrained) .577(±.019) .884(±.019) .761(±.011) .516(±.008) .895(±.017) .726(±.008)

Early Fusion .663(±.011) .888(±.014) .784(±.001) .553(±.015) .863(±.025) .750(±.005)
Late Fusion .641(±.014) .864(±.023) .775(±.008) .574(±.020) .899(±.010) .751(±.003)

Table 4. Comparison for localization performance for models with multiple training
runs. Metric is average pixel-level F1 (± standard deviation)

We also compare across models in terms of detection performance and present
the results in Table 5. Notably, our early fusion method demonstrates exceptional
performance, surpassing the state-of-the-art on average. Particularly notewor-
thy is its outstanding performance on the Coverage dataset, where it achieves
a remarkable improvement of nearly 7% in terms of the Area Under the Curve
(AUC) and 9% in terms of balanced accuracy (bAcc) compared to the prior
leading method. Our late fusion approach also exhibits competitive AUC per-
formance, but falls slightly behind the TruFor model in terms of bAcc. This
disparity in bAcc performance could potentially be attributed to the size of our
late fusion model, which may be susceptible to overfitting. Further investigation
and experimentation are warranted to explore the possibility of requiring ad-
ditional regularization techniques to optimize its performance for the detection
task.

Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
Model AUC bAcc AUC bAcc AUC bAcc AUC bAcc AUC bAcc AUC bAcc
TruFor .770 .680 .996 .984 .916 .813 .752 .639 .984 .930 .884 .809

CAT-Netv2 .680 .635 .977 .803 .942 .838 .667 .580 .747 .525 .803 .676
ManTraNet .760 .500 .810 .500 .644 .500 .778 .500 .874 .500 .773 .500
PSCC-Net .657 .473 .300 .604 .869 .520 .777 .515 .650 .458 .651 .514

SPAN .670 .235 .999 .759 .480 .112 .475 .298 .669 .233 .659 .327
CR-CNN .553 .391 .755 .631 .670 .481 .589 .447 .576 .289 .629 .448

MVSS-Net .733 .514 .984 .729 .932 .528 .654 .117 .552 .358 .771 .449
Early Fusion .839 .770 .996 .962 .929 .845 .755 .660 .966 .935 .897 .834
Late Fusion .792 .720 .977 .822 .930 .860 .760 .677 .958 .830 .884 .782

Table 5. Comparison for detection performance. Metrics are Area Under Curve (AUC)
and balanced accuracy (bAcc).
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4.3 Ablation Study

In this section, for the purpose of contrasting various forensic filters (SRM, Ba-
yar conv, NoisePrint++), we employ a dual-branch CMX architecture where
each filter serves as an auxiliary input alongside the RGB image. The outcomes
are presented in Table 6, along with the number of parameters (in millions) and
runtime (for a single image on an RTX 3090 GPU) for all methods. During this
training the Bayar convolutional layer is trainable, while SRM and NoisePrint
are kept frozen. We can see that NoisePrint++’s editing history based training
helps achieve the best performance on DSO-1, where manipulations are cov-
ered using post-processing operations, while SRM and Bayar perform better in
CocoGlide and Coverage. Coverage contains only copy-move manipulations for
which NoisePrint’s camera model identification might not provide robust enough
forensic traces, whereas CocoGlide’s manipulations are diffusion-based inpaint-
ings potentially resulting in distinct artifacts that diverge from conventional
editing histories. Consequently, NoisePrint encounters difficulties in effectively
handling such cases. We also compare all methods that use a single forensic fil-
ter to our multi-modal fusion approaches and we can see that both the early-
and late-fusion paradigms effectively combine the forensic traces provided by
the filters, resulting in increased performance. To substantiate our rationale for
introducing shared weights between RGB branches in order to enhance regular-
ization within the late fusion paradigm, we additionally evaluate a variation of
our method that does not employ weight sharing, and we observe that weight-
sharing does contribute to improved performance.

Version Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG Params(M) Runtime(ms)
CMX (RGB+NP++) .577 .884 .761 .516 .895 .726 68.3 73.5
CMX (RGB+Bayar) .592 .872 .774 .566 .776 .716 68.1 60.2
CMX (RGB+SRM) .630 .834 .791 .585 .792 .726 68.1 59.6

Late Fusion
(No weight sharing) .611 .912 .760 .566 .785 .727 200.7 114.2

Early Fusion .663 .888 .784 .553 .863 .750 68.9 79.2
Late Fusion .641 .864 .775 .574 .899 .751 152.3 110.5

Table 6. Ablation study. Localization results in avg pixel F1. Parameter count in
Millions. Runtime in milliseconds for a single image on an RTX 3090 GPU.

The complementarity of the forensic filters is also apparent by the qualitative
analysis in Fig. 4, where we see that the early fusion method effectively utilizes
all of them. It produces accurate predictions in cases where one of the filters fail,
like in the first picture where models that use Bayar or SRM can’t accuarately
localize the manipulation and in the second picture where the NoisePrint-based
model (TruFor) fails. Even in some cases where all filters fail independently, the
combined approach can produce accurate results, as shown for the fourth picture
of Fig. 4.



Multi-Modal Fusion for Image Manipulation Detection and Localization 11

Image Ground
Truth

RGB+
NP++

RGB+
Bayar

RGB+
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Early
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Fig. 4. Qualitative results.

4.4 Robustness Analysis

In this section, we include experiments performed on images with varying quality
degradations to demonstrate the robustness of our approaches, similarly to Guil-
laro et al [9]. We use the Casiav1+ dataset and perform Gaussian blurring with
different kernel sizes and JPEG compression with varying quality factors and
compare to our baseline, TruFor. The findings depicted in Fig. 5 demonstrate
that both of our fusion approaches exhibit good robustness across a broad spec-
trum of degradations, maintaining a consistent advantage over TruFor across all
degradation levels employed.

5 Conclusion

In this work, we explore approaches toward expanding existing encoder-decoder
architectures for IMLD to support multiple forensic filters as inputs. We compare
the performance of approaches using Bayar conv, SRM filters, and NoisePrint++
and discover that they indeed showcase complementary forensic capabilities as
was hypothesized. We propose two different modal-fusion paradigms and conduct
extensive experiments to demonstrate that both approaches reach state-of-the-
art across several datasets, showcasing good generalization abilities, and are
effective at leveraging and combining diverse forensic artifacts from different
filters. In future work, we would like to explore the performance limitations of
models reliant on forensic filters against directed adversarial attacks.
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Fig. 5. Robustness analysis with regards to Gaussian blur (left) and JPEG compression
(right)
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