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Abstract—Recent image manipulation localization and detec-
tion techniques typically leverage forensic artifacts and traces
that are produced by a noise-sensitive filter, such as SRM or Ba-
yar convolution. In this paper, we showcase that different filters
commonly used in such approaches excel at unveiling different
types of manipulations and provide complementary forensic
traces. Thus, we explore ways of combining the outputs of such
filters to leverage the complementary nature of the produced
artifacts for performing image manipulation localization and
detection (IMLD). We assess two distinct combination methods:
one that produces independent features from each forensic filter
and then fuses them (this is referred to as late fusion) and
one that performs early mixing of different modal outputs and
produces combined features (this is referred to as early fusion).
We use the latter as a feature encoding mechanism, accompanied
by a new decoding mechanism that encompasses feature re-
weighting, for formulating the proposed MMFusion architecture.
We demonstrate that MMFusion achieves competitive perfor-
mance for both image manipulation localization and detection,
outperforming state-of-the-art models across several image and
video datasets. We also investigate further the contribution of
each forensic filter within MMFusion for addressing different
types of manipulations, building on recent AI explainability
measures.

Index Terms—Image forensics, Image manipulation localiza-
tion, Image manipulation detection, Video manipulation detec-
tion, Noise-sensitive filters, Multi-modal fusion

I. INTRODUCTION

Editing and manipulating digital media has gotten increas-
ingly easier and more accessible in recent years. Recent
advances in image editing software, as well as deep generative
models such as Generative Adversarial Networks (GANs)
[1], [2] and diffusion models [3], [4], facilitate producing
manipulations that are often imperceptible to the human eye
and are widely available, even to potentially malicious users.
The widespread use of smartphones and social networks also
enables the spread of such manipulated media at a rapid pace.
As a result, such edited images can cause social problems
when used as evidence to support disinformation campaigns
and stories or mislead the public by obfuscating important
content from news, resulting in diminished trust. Therefore,
techniques for image manipulation detection and localization,
as part of complete toolboxes for media verification such as
[5], are now needed more than ever.

Image forgery localization and detection are tasks the media
forensics field has been working on for many years. Early

works typically focused on a specific type of manipulation
such as splicing [6], copy-move [7] or removal/inpainting
[8]. More recently, deep-learning-based solutions of increasing
robustness are proposed that are able to recognize multiple
different types of manipulations [9]–[16]. In order to be able
to perform manipulation localization in a semantic-agnostic
manner, these models need to suppress image content to reveal
forensic artifacts. Most approaches achieve this by applying a
high-pass filter to extract noise maps [9], [12], [14]–[16]. The
most popular high-pass filters used are the ones proposed in the
Steganalysis Rich Model (SRM) [17], utilized in a wide variety
of works [12], [15], [18]–[20], while the Bayar convolution
[21] is also used in a multitude of approaches [9], [12], [14],
[15] and NoisePrint is used in a more recent model [11].

We hypothesize that those different forensic filters actu-
ally produce artifacts of complementary forensic capabilities.
NoisePrint [22] and its successor NoisePrint++ [11] produce
artifacts that relate to camera model and editing history, thus
displaying limited performance for copy-move manipulations
(see Sec. IV-C for results supporting this statement). On the
other hand, SRM [17] filters can identify edges and boundaries
without relying on camera or compression/editing artifacts.
These filters are, however, fixed by design (not trainable
or changeable), a property that makes them vulnerable to
adversarial attacks; whereas the Bayar convolution [21], on the
other hand, learns the manipulation traces directly from data,
proving more robust against malicious attacks. In this work
we explore ways to expand existing state-of-the-art Image
Manipulation Localization and Detection (IMLD) approaches
to support multiple forensic filters as inputs. We start with Tru-
For [11] as our baseline and propose utilizing NoisePrint++,
SRM, and Bayar convolution as inputs auxiliary to the RGB
image. We initially assess two different approaches to feature
encoding: a late-fusion paradigm that extracts and encodes
features from each modality (filter) separately, and an early-
fusion paradigm that mixes the multi-modal features by early
convolutional blocks. We also improve the decoder architec-
ture of [11] by introducing feature re-weighting (in both the
Anomaly and Confidence decoders), improving the model’s
capability for recognizing and localizing anomalies. We then
propose the MMFusion architecture (Fig. 1), which employs
early fusion and the aforementioned decoder architecture,
and we also explore ways of explaining the predictions and
understanding the unique capabilities of the different forensic
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Fig. 1: Overview of the MMFusion Encoder-Decoder architecture for image localization and detection with multiple forensic
filters. The RGB image and the output of each filter are fed into a Multi-Scale encoder, whose output is passed onto both the
anomaly decoder, which produces a localization map, and the confidence decoder, which produces a confidence map. The two
maps are then combined through a pooling module and passed into the forgery detector to produce the manipulation detection
score.

filters of MMFusion. We find that the different filters excel at
recognizing different kinds of image manipulations, validating
our original hypothesis regarding their complementarity.

Furthermore, we investigate the capabilities of IMLD mod-
els without a special temporal-aware architecture for detecting
and localizing manipulations in videos. We demonstrate that
by using frame-level predictions with our MMFusion IMLD
model we can reach state-of-the-art performance in Video
Manipulation Localization and Detection (VMLD) tasks, doc-
umenting the merits of MMFusion while also highlighting
the possibly limited complexity of the existing VMLD bench-
marks.

A preliminary version of this work, with a simpler de-
coder architecture (without the proposed Feature Re-weighting
Decoder) and without the studies on the explainability of
multimodal IMLD models and the applicability of IMLD
models to VMLD tasks, was presented in [23]. Our main
contributions in this paper are summarized as follows:

• We compare the efficacy of different forensic filters,
namely SRM, Bayar convolution and NoisePrint++, as
inputs for deep networks performing forgery localization.

• We assess two distinct approaches for combining the
outputs of different forensic filters for the purpose of
image manipulation localization and detection, and we
propose the MMFusion architecture.

• We propose, as part of the MMFusion architecture, a new
Feature Re-weighing Decoder (FRD) that significantly
increases localization performance.

• We also investigate the applicability of IMLD models,
and our model specifically, on video datasets and compare
it to state-of-the-art Video Manipulation Localization and
Detection models. We compare our performance both
with models specifically designed to tackle temporal in-
consistencies for VMLD and with simple IMLD models,
and we provide a new baseline for the application of
IMLD models on video without architectural changes.

• We propose a method for explaining the predictions
of our multi-modal IMLD model by quantifying the
contribution of each forensic filter for a specific image.
This enables us to investigate the efficacy of each filter

for different manipulation types and thus provide a deeper
understanding of their predictive capabilities.

II. RELATED WORK

A. Image Manipulation Localization and Detection

Traditional image forensics methods, e.g. [24]–[26], have
largely focused on detecting inconsistencies in low-level
semantic-agnostic compression and internal camera artifacts.
These artifacts can usually be revealed through high-pass
filtering techniques that produce a noise-sensitive visualization
of the image.

In recent times, various filters for noise extraction have
been integrated into deep learning models to address the
challenge of image manipulation localization and detection.
Zhou et al. proposed RGB-N [18], a two-stream Faster R-CNN
network [27] that utilizes the RGB channel features as well
as the extracted SRM-based noise features of the input image
to detect visual inconsistencies and identify mismatches be-
tween authentic and tampered regions, originating from image
splicing, to perform forgery detection with bounding boxes.
In a similar fashion, Yang et al. showcased Constrained R-
CNN (CR-CNN) [14], a coarse-to-fine end-to-end architecture,
which uses a learnable manipulation feature extractor (LMFE)
based on a Bayar convolution, to create a unified feature
representation for various manipulation types directly from
the data. CR-CNN then follows two distinct stages: stage
1 performs manipulation technique classification and coarse
manipulated region localization using the attention regional
proposal network (RPN-A), while stage 2 fuses low- and high-
level information to refine the global manipulation features.
The model finally combines these refined features with the
coarse localization information to further learn the finer local
features and perform tampered region segmentation. Wu et al.
[12] conducted experiments with various backbone network
architectures and feature choices for proposing ManTraNet,
a VGG-based manipulation localization and detection model,
that integrates both SRM filters and Bayar convolution and
is composed of three stages: adaptation, which adapts the
manipulation trace feature for the anomaly detection task;
anomalous feature extraction, which is inspired by human
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thinking and extracts anomalous features; and decision, which
holistically considers anomalous features and classifies each
pixel as either forged or not. Hu et al. presented SPAN (Spatial
Pyramid Attention Network) [15], a framework for detecting
and localizing various image manipulations by utilizing a
hierarchical pyramid structure that models and encodes the
relationships and the spatial positions of image patches at
multiple scales using local self-attention blocks and position
projection. It includes three blocks: a feature extractor, a
spatial pyramid attention block, and a decision module applied
on top of the output from the spatial pyramid attention prop-
agation module to predict the localization mask. Moreover,
Chen et al. introduced MVSSNet [9], a network that fuses the
features from a ResNet-based edge-supervised branch (with
a Sobel layer for edge enhancement) and a noise-sensitive
branch using Bayar convolution via a trainable Dual Attention
(DA) module in a late fusion paradigm, trained through multi-
scale supervision. To combat the limited generalizability of
MantraNet and SPAN, due to them being unable to fully take
advantage of the spatial correlation, Liu et al. [10] proposed
PSCC-Net, which employs a Spatio-Channel Correlation Mod-
ule (SCCM) that leverages the Gaussian function, to capture
spatial and channel-wise correlations. PSCC-Net is a two-
path structure architecture that follows a top-down path for
extracting local and global features and a bottom-up path for
detecting manipulations and estimating manipulation masks at
multiple scales. It then uses dense cross-connections to fuse
features across scales in a coarse-to-fine manner. Extending on
their previous work that only targeted splicing forgery, Kwon
et al. [13] expanded their research to additionally deal with
copy-move forgery and introduced CatNetv2, which captures
image acquisition camera-specific artifacts in the RGB domain
and compression artifacts in the DCT domain and localizes
the manipulated regions by considering the domains jointly.
Similarly, Wang et al. defined ObjectFormer [16], an end-to-
end multi-modal framework that combines RGB features and
frequency features and consists of a High-frequency Feature
Extraction Module, an object encoder that uses learnable
object queries to learn whether mid-level representations in
images are coherent, and a patch decoder that produces
refined global representations for manipulation detection and
localization. Shi et al. [28] also proposed a dual domain-based
CNN architecture with a spatial-domain CNN model (Sub-
SCNN), that utilizes SRM filters and performs hierarchical
feature extraction, and a frequency domain-based CNN model
(Sub-FCNN) that extracts statistical features using the 3-level
Daubechies-based Discrete Wavelet Transformation (DWT).
Song et al. [29] created the Tri-Path Backbone Architecture
(TPB-Net) that consists of three DenseNet169 networks in a
feature pyramid structure, to integrate features from differ-
ent levels. They introduce a Dual-path Compressed Sensing
Attention (DCSA) module to facilitate feature fusion, with
the reasoning that high-level feature maps generally contain
richer semantic information. Focusing specifically on inpaint-
ing region localization, Daryani et al. [30] defined a CNN-
based deep learning model called IRL-Net, which includes
three main modules: the enhancement module that tries to en-
hance inpainting traces with a Bayar layer, the encoder which

includes four residual units to avoid vanishing/exploding gra-
dients, and a Decoder that uses attention to map the learned
high-level features extracted by the encoder. Finally, Guillaro
et al. leveraged NoisePrint [22], a noise extractor proposed
by Cozzolino et al. that is trained in a self-supervised manner
to extract camera-specific artifacts and expanded its use in
TruFor [11], where it is used jointly with RGB images in a
dual-branch CMX [31] architecture.

Contrary to most of the above works, that rely on a single
forensic filter, our approach innovatively explores strategies for
combining the outputs of three diverse noise extractors, lever-
aging their complementary capabilities to develop a robust
end-to-end image forgery detection and localization model.

B. Video Manipulation Localization and Detection

Early works on video forensics, much like image foren-
sics, relied heavily on non-learning based signal processing
techniques to extract forensic artifacts. These methods were
generally restricted in the types of forgeries they could detect
and in the accuracy of said detection [32].

In recent years, the trend has shifted toward deep learning-
based approaches, enabling the development of networks ca-
pable of recognizing a broad range of forgeries. However,
most methods have focused on the detection of a narrow
set of very specific forgeries [33], such as frame insertion
and deletion [34]–[36], or most commonly face deepfakes
[20], [37]–[39]. Very few approaches have tackled the general
problem of video forgery detection directly. The advent of
models like VideoFACT [32], [40] illustrates the shift toward
deep learning-based frameworks. VideoFACT [40] incorpo-
rates forensic and contextual embeddings to capture traces left
by manipulation and check for variations in forensic traces
introduced by video coding. Subsequently, to estimate the
quality and the relative importance of these local embeddings,
it employs a deep self-attention mechanism.

Similarly to most works on IMLD, the few existing VMLD
methods do not leverage multiple forensic filters and their
potential complementarity.

III. METHODOLOGY

A. Encoder-Decoder Architecture

Our goal is to extend an existing encoder-decoder-based
architecture to be able to use multiple forensic filters (SRM
[17], Bayar convolution [21], NoisePrint++ [11]) in tandem, so
as to produce more robust representations for the IMLD task.
To this end we adopt the general architecture of TruFor [11],
i.e., as illustrated in Fig. 1 we use an encoder, an anomaly
decoder, a confidence decoder, and a forgery detector; and
we follow TruFor’s two-phase training regime for anomaly
localization and detection, respectively. The encoder follows
the popular dual-branch architecture proposed in [31] and
illustrated in Fig. 2 for a single forensic filter, comprising of 4
stages of Multi-Head Self Attention (MHSA) blocks [41] that
produce feature maps f i

mod of different scales: H
2i+1× W

2i+1×Ci,
where i ∈ {1, 2, 3, 4},mod ∈ {image, filter}, H and W are
the spatial dimensions of the input image and Ci is the channel
dimension of the output at stage (and scale) i. The two MHSA
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Fig. 2: Architecture of the dual-branch encoder of [31]. The encoder is made of 4 stages of Multi-Head Self Attention (MHSA)
blocks to produce feature maps f i

mod for modality mod ∈ {image, filter} and stage i ∈ {1, 2, 3, 4}. These are then fused and
rectified by the FRM and FFM modules to produce the outputs F i at each scale i. The feature map set F = {F i, i = 1, ...4}
is the final output returned by the encoder.

TABLE I: Main symbols used in Sec. III for denoting feature
maps.

Symbol Description
f i
mod Feature maps returned by the MHSA block of the encoder

for modality mod ∈ {image, filter} at stage i (Fig. 2)
F i Fused feature maps returned by the FFM module of the

encoder at stage i (Fig. 2, 4)
f i
filter Feature maps returned by the MHSA block

of the late fusion encoder for filter filter ∈
{noiseprint, srm, bayar} at stage i (Fig. 3)

F i
filter Feature maps returned by the FFM module

of the late fusion encoder for filter filter ∈
{noiseprint, srm, bayar} at stage i (Fig. 3)

fa Mixed features produced by the early fusion module (Fig.
4)

F = {F i} Output feature maps of the encoder (Fig. 5)
D = {Di} Re-weighted feature maps fed to the MLP-based decoder

(Fig. 5)

blocks’ outputs (for the RGB image and the filter) in each
stage are rectified through a Cross-Modal Feature Rectification
Module (FRM) [31] that exploits the interactions between the
two input modalities (RGB and NoisePrint++ in the case of
TruFor). The FRM uses features from both modalities to pro-
duce weighted channel- and spatial-wise feature maps that are
residually added for both modalities to perform channel- and
spatial-wise rectification. The two sets of feature maps are then
combined using a Feature Fusion Module (FFM) [31], whose
outputs F i (having the same dimensions as the outputs of the
MHSA blocks at each scale i) for i ∈ {1, 2, 3, 4} collectively
constitute the encoder output F = {F i, i = 1, ...4} (see
Table I for notation summary, and references to the relevant
architecture diagrams). The FFM consists of an information
exchange stage, where a cross-attention mechanism exchanges
information between modalities and produces two sets of
mixed feature maps, and a fusion stage where the feature maps
are merged into a single output through a residual Multilayer
Perceptron (MLP) module that uses 1 × 1 convolutions. The
Decoders illustrated in Fig. 1 are, in the case of TruFor [11],
MLP-based decoders proposed in [41].

Utilizing this architecture one can combine RGB images
with an auxiliary forensic modality to perform Image Manipu-
lation Localization. In [11] Guillaro et al. use their own feature
extractor NoisePrint++, however a multitude of other forensic
filters’ outputs, such as Bayar convolution [21] or SRM [17],

can be utilized. These filters are analyzed in Sec. III-B. We
assess two different ways of extending the encoder architecture
to multiple auxiliary modal inputs: a late fusion paradigm,
where each auxiliary modality is combined with RGB inputs
separately using a dual-branch architecture [31] (Sec. III-C),
and an early fusion paradigm where auxiliary modalities are
combined early before being utilized as input to the dual-
branch encoder together with the RGB inputs (Sec. III-D).
We then propose the MMFusion architecture, that extends the
encoder architecture to multiple auxiliary modal inputs using
early fusion and introduces a feature re-weighting step in the
decoders.

B. Auxiliary (a.k.a. filter) modalities

For both early- and late-fusion approaches, we use the
outputs of three forensic filters, namely NoisePrint++, SRM
and Bayar convolution, as inputs that are auxiliary to the
RGB image. We choose these filters as they are widely used
in the relevant literature (Sec. II-A), they showcase good
performance and also complement each other well: SRM is a
static feature extractor that mostly extracts edge features, while
NoisePrint++ and Bayar convolution are trainable modules that
are, however, trained with different objectives. NoisePrint++
is trained in a self-supervised contrastive manner as a camera
“fingerprint” extractor, while Bayar convolution is directly
trained for IMLD in a supervised setting, as explained below.

1) NoisePrint++: In [22] Cozzolino et al. proposed
Noiseprint, a CNN-based model designed to extract camera-
model-based artifacts from RGB images while suppressing
image content. In [11] they expanded their approach, namely
NoisePrint++, to be able to recognize and extract artifacts
related to the editing history of an image (e.g. compression,
resizing, gamma correction). NoisePrint++ is trained in a
supervised contrastive manner [42]: a batch of images is pro-
vided, from which patches are extracted from different loca-
tions. Then the patches go through different editing pipelines.
Patches extracted from the same source image, the same
location, and with the same editing history are considered
positive samples, while others are considered negative. In our
work we use NoisePrint++ as a pretrained feature extractor.
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Fig. 3: Proposed architecture of the encoder for fusion of multiple forensic filters by late fusion with weight sharing. The filters’
outputs and the RGB image are fed into separate MultiHead Self-Attention (MHSA) blocks of the dual-branch CMX encoder,
with the outputs rectified and combined by the FRM and FFM modules to produce the feature maps. These are propagated
through different stages to create feature maps of varying scales. The weights of the MHSA blocks of all RGB branches are
shared to increase regularization.

2) SRM: Another way to suppress the image content and
highlight forensic traces and noise is through static high-pass
filters, the most common of which are the ones proposed
for producing residual maps for the Steganalysis Rich Model
(SRM) [17]. Out of the 30 high-pass filters proposed in [17],
we use the 3 most commonly used in the literature, e.g. as
in [12], [15], [18], which are displayed in Fig. 4 of [18].
Following [17] and [18], the outputs of these three filters
are truncated and combined to form the final noise descriptor,
referred in the sequel as SRM filter.

3) Bayar Convolution: In contrast to using static high-pass
filters for noise extraction, Bayar et al. [21] proposed the con-
strained convolutional layer as a noise extractor that adaptively
learns manipulation traces from data. We use the constrained
convolutional layer as an extra noise feature extractor and
refer to it as Bayar convolution. For both our multi-modal
fusion approaches the Bayar convolutional layer is pretrained
alone in a dual branch CMX encoder [31] (as also done in our
ablation study for examining the effect of using Bayar as the
sole auxiliary input alongside the RGB image; see Sec. IV-C
and the results for “CMX (Bayar)” in Table VI) and then used
with its weights frozen.

C. Late Fusion

For the late fusion approach we extract the auxiliary rep-
resentations rnoiseprint, rsrm, rbayar of the RGB image x
from the NoisePrint++, SRM and Bayar filters respectively.
Then the output of each filter is fed together with the original
RGB input into a dual-branch CMX encoder E , made of 4
Multi-Head Self Attention (MHSA) blocks [41] that produce
4-scale feature maps f i

mod, where mod ∈ {image, filter},
filter ∈ {noiseprint, srm, bayar} and i ∈ {1, 2, 3, 4}.
These feature maps are passed to and rectified through the
FRM and FFM modules, to produce the final features of the
encoder F i

filter = Efilter(x, rfilter) as shown in Fig. 3.
The outputs F i

filter of the three encoders for a given i
are concatenated, and the resulting set of feature maps for
i ∈ {1, 2, 3, 4} constitutes the final output F of the encoder,
which is then passed to the decoders (as illustrated in Fig.
1). In this late fusion approach we use the same decoder
architecture as in TruFor for both the anomaly and confidence
decoders. Like other multi-modal approaches, this approach
is prone to overfitting and the “modality imbalance” problem
[43], [44], where different modalities converge and overfit at
different rates, thus hindering joint optimization. To tackle this
we make the weights of the modules along the RGB branch
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Fig. 4: Proposed architecture of the encoder for fusion of multiple forensic filters by early convolutions. On the left, we
illustrate the structure of the encoder. More specifically, the filters’ outputs are initially fused by early convolutional blocks
in the Early Fusion Module, to produce the mixed features fa. These features and the RGB image are then fed into separate
MultiHead Self-Attention (MHSA) blocks of a dual-branch CMX encoder, with the outputs rectified and combined by the
FRM and FFM modules to produce the feature maps. These are propagated through different stages to create feature maps of
varying scales. The structure of the convolutional block is presented on the right side.

Fig. 5: Proposed architecture of the Feature Re-weighting Decoder (FRD). The feature maps F returned from the encoder are
processed through convolutional layers, batch normalization and activation functions, and weighted channel- and spatial-wise
feature maps that enhance subtle variations in the input maps are produced. These are then passed to the MLP-based decoder
to generate the localization/confidence map.

shared across all 3 encoders to increase regularization. We also
employ Dropout before the anomaly decoder as the complete
encoder is rather large and the simple MLP-based decoder is
prone to overfitting.

D. Early Fusion

For the early fusion approach we extract again the same
auxiliary representations rnoiseprint, rsrm, rbayar of the RGB
image x. The inputs are then passed through our novel
Early Fusion Module EFM to produce the mixed features
fa = EFM(rnoiseprint, rsrm, rbayar) as shown in Fig. 4.
The EFM consists of 3 independent convolutional blocks,
one for each auxiliary modality, and one final convolutional
block that performs feature mixing. The convolutional blocks
are good at early visual processing, resulting in a more stable
optimization [45], thus aiding in mixing the features from
different modalities smoothly. The mixed features fa and

RGB image x are used as input for a dual-branch CMX
encoder [31], in the same manner as in TruFor. This is a
particularly lightweight approach to expanding the TruFor
architecture to handle multiple auxiliary modalities, as it does
not significantly increase the number of parameters of the
network (68.9M params compared to TruFor’s 68.7M, as
reported in [11]).

Each of the convolutional blocks mentioned above consists
of four 3× 3 convolutions followed by a 1× 1 convolutional
layer to resize the output to 3 channels (Fig. 4). There is
a batch normalization (BN) and a ReLU layer after each
3 × 3 convolutional layer. The output channels for the 3 × 3
convolutional layers are [24, 48, 96, 192].

E. Feature Re-weighting Decoder (FRD)

For the decoder part of our network we enhance the MLP-
based decoder used in CMX [31] to implement both the
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anomaly and the confidence decoder (see Fig. 1), with feature
re-weighing. The motivation behind this is that, for harder-
to-recognize manipulations, the encoder may produce feature
maps that are not dissimilar enough between the image’s
original and manipulated regions. Thus we employ feature re-
weighting to enhance the differences between these parts. The
process works by taking the feature maps F i of the feature
map set F produced by the encoder and re-weighing them
(resulting in re-weighted feature maps Di), before feeding the
multi-layer feature map set D = {Di, i = 1, ...4} into an
MLP-based decoder as shown in Fig. 5. The latter produces the
final decoder output. This re-weighting ensures that the subtle
variations become more pronounced, making it easier for the
subsequent MLP-based decoder to differentiate and accurately
process the manipulated content. This significantly enhances
the network’s ability to detect difficult-to-recognize manipu-
lations. The re-weighted feature maps D = {Di, i = 1, ...4}
are calculated (Fig. 5) as follows:

di1 = BN(Conv3×3(F
i))

di2 = BN(Conv3×3(d
i
1))

Di = sigmoid(Conv1×1(d
i
2)) ∗ F i

where BN denotes Batch Normalization and Conv3×3 and
Conv1×1 are convolutions with 3× 3 and 1× 1 kernels,
respectively.

IV. EXPERIMENTS

A. Experimental Setup

1) Training: We follow the training procedure proposed by
Guillaro et al. [11]: first, we jointly train the encoder and
anomaly decoder; after that, we train the confidence decoder
and the forgery detector, while the encoder and anomaly
decoder are kept frozen. For both training phases in IMLD
we use the datasets used by Kwon et al. [13], and sample an
equal number of images from each one for every epoch. For
the VLMD task, we use the datasets proposed in [40]. The
employed training datasets are summarized in Table II.

2) Testing: For testing, we evaluate our model on five
IMLD datasets: Coverage [46], Columbia [47], Casiav1+1

[49] and DSO-1 [50], which are widely used in the relevant
literature, and CocoGlide [11]. The latter is a diffusion-based
manipulation dataset proposed recently by Guillaro et al [11],
that uses the COCO validation dataset, [51] an object mask
with its corresponding label as the forgery region and the
text prompt, and feeds them to GLIDE [3] to generate new
synthetic objects. As for the other aforementioned datasets,
Coverage accommodates copy-move forgery manipulations,
while Columbia and DSO-1 focus on splicing manipulations.
Finally, Casiav1+ includes a variety of image manipulations
such as splicing, copy-move, and removal.

We also evaluate our models on VCMS, VPVM and VPIM
[40], which are datasets for Video Manipulation Localization
and Detection. VCMS contains splicing manipulations, while

1Casiav1+ is a modification of the Casiav1 dataset proposed by Chen et
al. [9] that replaces authentic images that also exist in Casiav2 with images
from the COREL [48] dataset to avoid data contamination.

Number of Images
Dataset Real Manipulated

Casiav2 [49] 7.491 5.105
IMD2020 [52] 414 2.010

FantasticReality [53] 16.592 19.423
cm coco [13] - 200.000

bcm coco [13] - 200.000
bcmc coco [13] - 200.000

sp coco [13] - 200.000
VCMS [40] 48.000 48.000
VPVM [40] 48.000 48.000
VPIM [40] 48.000 48.000

TABLE II: Number of real and manipulated images (or video
frames) in each training dataset. (Image datasets above line,
video datasets below line)

Number of Images
Dataset Real Manipulated

Coverage [46] 100 100
Columbia [47] 183 180
Casiav1+ [49] 800 921

DSO-1 [50] 100 100
CocoGlide [11] 512 512

VCMS [40] 300 300
VPVM [40] 300 300
VPIM [40] 300 300

TABLE III: Number of real and manipulated images (or video
frames) in each test dataset. (Image datasets above line, video
datasets below line)

VPVM and VPIM contain manipulations made with standard
video editing operations (blurring, gamma adjustment etc),
utilizing different strengths that make them visually percep-
tible (in VPVM) or imperceptible (in VPIM), respectively.
For all video datasets, we sample just the first frame of each
video to evaluate our method (hence the number of frames in
Table III is 300 for each of the manipulated / non-manipulated
classes, equal to the number of test videos for each class that
we retrieved from 2). We did such a radical frame sampling
because in early experiments we observed that using just
one frame per video yielded the same results as averaging
across all video’s frames (±0.01), while naturally requiring
significantly less runtime.

The employed testing datasets are summarized in Table III.
3) Evaluation Measures: For localization performance we

follow most previous works, e.g. [9]–[16], [18], [28]–[30], and
report average pixel-level performance using the F1 measure,
which uses the ground truth and the prediction mask to
determine the True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN). The F1 and the
inverse F1 scores are then computed and the maximum value
between the two is returned. TP are the pixels where the
ground truth and the prediction mask overlap to correctly
identify manipulated regions, TN are the pixels where the
ground truth and the prediction mask overlap to correctly
identify non-manipulated regions, FP are the pixels where
the prediction incorrectly identifies manipulated regions not
present in the ground truth and FN are the pixels where the
prediction mask fails to identify manipulated regions present in
the ground truth. We use a fixed threshold of 0.5, where pixels

2https://huggingface.co/datasets/ductai199x/video-std-manip
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TABLE IV: Average pixel-level F1 scores for the localization task on the considered models and image datasets. Best (higher)
scores in bold and second best scores underlined. Results for all models except for the proposed ones are taken from [11].

Model Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
TruFor [11] 0.600 0.859 0.737 0.523 0.930 0.729

CAT-Netv2 [13] 0.381 0.859 0.752 0.434 0.584 0.602
ManTraNet [12] 0.317 0.508 0.180 0.516 0.412 0.387
PSCC-Net [10] 0.473 0.604 0.520 0.515 0.458 0.514

SPAN [15] 0.235 0.759 0.112 0.298 0.233 0.327
CR-CNN [14] 0.391 0.631 0.481 0.447 0.289 0.448
MVSS-Net [9] 0.514 0.729 0.528 0.486 0.358 0.523

Late Fusion (Sec. III-C) 0.641 0.864 0.775 0.574 0.899 0.751
Early Fusion (Sec. III-D) 0.663 0.888 0.784 0.553 0.863 0.750

MMFusion (Early Fusion with FRD) 0.700 0.876 0.794 0.591 0.866 0.765

with higher value indicate the predicted manipulated regions,
as setting a best threshold per test dataset [13] or even per
image [11], like some other previous works have done, is not
realistic in practical scenarios where the ground truth is not
available, thus leading in exaggerated performance estimates.
For detection, similarly to e.g. [9]–[12], [14]–[16], [18], [29],
we calculate the image-level Area Under Curve (AUC), which
is a measure that evaluates the model’s ability to separate the
two classes (manipulated and or not) over various thresholds.
AUC takes values in the range [0.5,1.0], where a perfect model
would score 1.0, while a randomly guessing one would score
0.5. We also employ balanced accuracy (bAcc) as in [11],
which is the arithmetic mean of sensitivity and specificity,
with the threshold set once again to 0.5.

4) Implementation: All models are implemented in Py-
Torch and trained on a single consumer-grade NVIDIA GPU
(either an RTX 4090 or an RTX 3090), using an effective batch
size of 24 for 100 epochs. Physical batch size ranged from 4 to
8 depending on the model and an effective batch size of 24 was
reached by utilizing gradient accumulation. We use a Dropout
rate of 0.3 for the methods proposed in this paper. The MHSA
modules were initialized with ImageNet-pretrained weights as
proposed in [31], [54]. We utilized an SGD optimizer with
an initial learning rate of 0.005, momentum of 0.9, weight
decay of 0.0005 and a polynomial learning rate schedule. For
training augmentations we followed the protocol of Guillaro et
al. [11]: resized the images in the [0.5-1.5] range, performed
random cropping of size 512×512 and JPEG compression with
a random Quality Factor QF∈[30,100].

B. Evaluation and Comparisons on Image Manipulation
Datasets

We compare our methods with recent state-of-the-art ap-
proaches for IMLD. Following Guillaro et al. we consider
methods with open source models provided and we exclude
models that use part of our testing datasets for training to avoid
bias. Overall, we compare with TruFor [11], CAT-Netv2 [13],
ManTraNet [12], PSCC-Net [10], SPAN [15], Constrained R-
CNN [14], MVSS-Net [9]. Results are presented in Table IV.

Both of our multi-modal fusion approaches, as well as
the proposed MMFusion architecture, showcase state-of-the-
art performance, being either the best or second-best model
for every dataset. We also observe that the proposed decoder
employed in MMFusion further increases the average F1 by
1.5%, reaching a value of 76.5%. Especially for the Coverage

dataset that contains only copy-move forgeries, MMFsusion
surpasses the previous best, TruFor, by 10%. The only dataset
where we do not achieve top performance is DSO-1, where
our best approach (Late Fusion) is 3% behind TruFor.

We also compare across models in terms of detection
performance and present the results in Table V. Notably, our
early fusion variant and the MMFusion architecture demon-
strate exceptional performance, surpassing the state-of-the-
art on average. Particularly noteworthy is the outstanding
performance on the Coverage dataset, where they achieve a
remarkable improvement of nearly 7% in terms of the Area
Under the Curve (AUC) and 9% in terms of balanced accuracy
(bAcc) compared to the prior leading method. Our late fusion
approach also exhibits competitive AUC performance, but falls
slightly behind the TruFor model in terms of bAcc. This
disparity in bAcc performance could potentially be attributed
to the size of our late fusion model, which makes it susceptible
to overfitting.

Finally, the effectiveness of our proposed approaches is il-
lustrated with qualitative results in Fig. 6, where we see that all
our fusion approaches can approximately localize the existing
manipulation(s), with MMFusion achieving more accurate and
complete localization. More specifically, in the first image
(coming from the Coverage dataset), MMFusion most closely
matches the Ground Truth, while the Early Fusion model
without FRD over-predicts, highlighting the top of the original
glass, and Late Fusion misses key areas like the ribbon. In
the second image (from the CocoGlide dataset), MMFusion
again performs the best, accurately capturing most of the
manipulated region, while the other two fusion approaches
leave gaps in the shape of the bus or even fail to detect it
all together. For the third image (from the DSO-1 dataset),
MMFusion provides the most accurate prediction of the three,
as it correctly detects the lower right portion of the shirt as
manipulated.

C. Ablation Study

In this section, for the purpose of contrasting the employed
forensic filters (SRM, Bayar conv, NoisePrint++), we train
a dual-branch CMX architecture where each filter’s output
serves as the single auxiliary input alongside the RGB image.
The outcomes are presented in Table VI, along with the num-
ber of parameters (in millions) and runtime (for a single image
on an RTX 3090 GPU) for all methods. During this training
the Bayar convolutional layer is trainable, while SRM and
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TABLE V: Results of the Area Under Curve (AUC) and balanced accuracy (bAcc) measures for the detection task on the
considered models and image datasets. Best (higher) scores in bold and second best scores underlined.

Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
Model AUC bAcc AUC bAcc AUC bAcc AUC bAcc AUC bAcc AUC bAcc

TruFor [11] 0.770 0.680 0.996 0.984 0.916 0.813 0.752 0.639 0.984 0.930 0.884 0.809
CAT-Netv2 [13] 0.680 0.635 0.977 0.803 0.942 0.838 0.667 0.580 0.747 0.525 0.803 0.676
ManTraNet [12] 0.760 0.500 0.810 0.500 0.644 0.500 0.778 0.500 0.874 0.500 0.773 0.500
PSCC-Net [10] 0.657 0.473 0.300 0.604 0.869 0.520 0.777 0.515 0.650 0.458 0.651 0.514

SPAN [15] 0.670 0.235 0.999 0.759 0.480 0.112 0.475 0.298 0.669 0.233 0.659 0.327
CR-CNN [14] 0.553 0.391 0.755 0.631 0.670 0.481 0.589 0.447 0.576 0.289 0.629 0.448
MVSS-Net [9] 0.733 0.514 0.984 0.729 0.932 0.528 0.654 0.117 0.552 0.358 0.771 0.449

Late Fusion (Sec. III-C) 0.792 0.720 0.977 0.822 0.930 0.860 0.760 0.677 0.958 0.830 0.884 0.782
Early Fusion (Sec. III-D) 0.839 0.770 0.996 0.962 0.929 0.845 0.755 0.660 0.966 0.935 0.897 0.834

MMFusion (Early Fusion with FRD) 0.837 0.765 0.998 0.814 0.931 0.860 0.775 0.699 0.923 0.735 0.893 0.776

Image Ground Truth Late Fusion Early Fusion MMFusion

Fig. 6: Qualitative results, showing for each image the Ground Truth mask of the manipulated region and the corresponding
prediction of each of the examined / proposed filter fusion approaches. Source dataset of each image: top row: Coverage;
middle row: CocoGlide; bottom row: DSO-1.

TABLE VI: Average pixel-level F1 scores for the localization task on the considered ablation study variants and datasets.
Parameter count in Millions. Runtime in milliseconds for a single image of the Casiav1+ dataset on an RTX 3090 GPU. Best
scores (higher for avg F1, lower for params/runtime) in bold and second best scores underlined.

Version Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG Params(M) Runtime(ms)
CMX (NP++) 0.577 0.884 0.761 0.516 0.895 0.726 68.3 34.9
CMX (Bayar) 0.592 0.872 0.774 0.566 0.776 0.716 68.1 34.2
CMX (SRM) 0.630 0.834 0.791 0.585 0.792 0.726 68.1 34.0

Late Fusion (Sec. III-C) -
No weight sharing 0.611 0.912 0.760 0.566 0.785 0.727 200.7 79.1

Late Fusion (Sec. III-C) 0.641 0.864 0.775 0.574 0.899 0.751 152.3 77.2
Early Fusion (Sec. III-D) 0.663 0.888 0.784 0.553 0.863 0.750 68.9 42.0

MMFusion (Early Fusion with FRD) 0.700 0.876 0.794 0.591 0.866 0.765 68.9 43.6

NoisePrint++ are kept frozen. We can see that NoisePrint++’s
editing-history-based training helps achieve the best perfor-
mance on DSO-1, where manipulations are covered using
post-processing operations, while SRM and Bayar perform
better in CocoGlide and Coverage. Coverage contains only
copy-move manipulations for which NoisePrint’s++ camera
model identification might not provide robust enough foren-
sic traces, whereas CocoGlide’s manipulations are diffusion-
based inpaintings potentially resulting in distinct artifacts that

diverge from conventional editing histories. Consequently,
NoisePrint++ encounters difficulties in effectively handling
such cases. We also compare all methods that use a sin-
gle forensic filter to our multi-modal fusion approaches and
we can see that the latter effectively combine the forensic
traces provided by the different filters, resulting in increased
performance. To substantiate our rationale for introducing
shared weights between RGB branches in order to enhance
regularization within the late fusion paradigm, we additionally
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Image Ground Truth CMX(NP++) CMX(Bayar) CMX(SRM) MMFusion

Fig. 7: Qualitative results, showing for each image the Ground Truth mask of the manipulated region and the corresponding
predictions of the MMFusion approach as well as of the CMX architecture that uses each filter separately. Source dataset of
each image: rows 1-2: Coverage; rows 3-4: Columbia; rows 5-6: Casiav1+; rows 7-8: CocoGlide; rows 9-10: DSO-1.



11

evaluate a variation of our method that does not employ weight
sharing, and we observe that weight-sharing does contribute
to improved performance.

We also qualitatively compare our proposed MMFusion
approach with the dual-branch CMX architecture that uses
each filter separately in Fig 7, and we confirm the ability
of MMFusion to effectively combine the information of each
filter. More specifically, for the examples from the Coverage
dataset (rows 1 and 2), MMFusion accurately localizes the ma-
nipulated region that is shown in the ground truth mask, while
the SRM and Noiseprint++ models either over-estimate or
miss crucial parts. In the splicing samples from the Columbia
dataset (rows 3 and 4), the MMFusion-generated localization
predictions are the least noisy ones among the results of all
compared approaches. On the images of the Casiav1+ dataset
(rows 5 and 6), MMFusion correctly identifies the manipulated
region of the woman in the red dress, including most of the
parts of her arms that other methods missed, and avoiding the
incorrect detection of the person playing golf by the Bayar
and SRM filters. Similar comments can be made by looking
at the CocoGlide images (rows 7 and 8), where, for the bus
example Noiseprint++ and Bayar leave gaps in the prediction
while in the other image they outright miss detecting some of
the donuts as manipulated, contrary to MMFusion that gives
the closest localization result to the ground truth. Closing with
some samples from the DSO-1 dataset (rows 9 and 10), we
observe that Bayar and SRM over-estimate manipulations in
the presence of people and faces, with our approach gives the
cleanest and most accurate result.

D. Evaluation and Comparisons on Video Manipulation
Datasets

We further evaluate our proposed method MMFusion on
the VCMS, VPVM, VPIM [40] video datasets, which contain
manipulated videos, and compare our approach with the state-
of-the-art video manipulation detection model VideoFACT
[40] and, by extension, with image manipulation detection
methods that were used for comparisons in [40]. As reported
in the latter, VideoFACT was trained on a combination of the
VCMS, VPVM and VPIM video datasets and three image
datasets. For MMFusion, we assess models of it trained on
different datasets: a model that is trained on image data only
(i.e. the same trained model that is evaluated in the preceding
sections), a model that is trained only on the training splits of
the employed video datasets (VCMS, VPVM, VPIM), and a
model that is trained on all of our training data (i.e. all images
and video frames of Table II). The results are presented in
Tables VII and VIII.

We observe that even without training on the video datasets,
our model reaches state-of-the-art performance on the VCMS
dataset that contains splicing manipulations while it outper-
forms other IMLD methods on the VPVM and VPIM datasets,
thus establishing a new baseline of VMLD performance for
IMLD models. Our models trained on video-only and both
image-video data also achieve state-of-the-art performance
across all datasets, showcasing that designing complex tem-
poral modules that are also computationally expensive is not

necessary to achieve state-of-the-art performance on VMLD
tasks; simply training on video data should suffice, at least
for the types of video manipulations present on our eval-
uation datasets. This also exposes the need for new more
sophisticated VMLD datasets that contain manipulations with
more complex temporal elements, in order to be able to more
accurately compare VMLD models.

TABLE VII: Average pixel-level F1 scores for the video
localization task on the considered models and datasets. Best
(higher) scores in bold and second best scores underlined.
Results for all models except for the proposed ones are taken
from [40].

Model VCMS VPVM VPIM AVG
VIDEOFACT [40] 0.526 0.697 0.547 0.590

NoisePrint [22] 0.030 0.013 0.010 0.018
MantraNet [12] 0.114 0.145 0.064 0.108
MVSS-Net [9] 0.557 0.279 0.042 0.293

MMFusion (Image Data) 0.838 0.520 0.229 0.529
MMFusion (Video Data) 0.952 0.945 0.686 0.861

MMFusion (All data) 0.921 0.898 0.579 0.799

TABLE VIII: Balanced accuracy scores for the video detection
task on the considered models and datasets. Best (higher)
scores in bold and second best scores underlined. Results for
all models except for the proposed ones are taken from [40].

Model VCMS VPVM VPIM AVG
VIDEOFACT [40] 0.987 0.950 0.797 0.911

NoisePrint [22] 0.500 0.500 0.500 0.500
MantraNet [12] 0.500 0.500 0.500 0.500
MVSS-Net [9] 0.602 0.529 0.492 0.541

MMFusion (Image Data) 0.915 0.650 0.510 0.692
MMFusion (Video Data) 0.963 0.962 0.878 0.934

MMFusion (All data) 0.923 0.923 0.822 0.889

E. Robustness Analysis

In this section, we include experiments performed on images
with varying quality degradations to demonstrate the robust-
ness of our approach, similarly to Guillaro et al [11]. We
use the Casiav1+ dataset and perform Gaussian blurring with
different kernel sizes (3, 5, 7, 9, 11, 13) and JPEG compression
with varying quality factors (100, 90, 80, 70, 60, 50) and
compare the emerging pixel-level F1 scores to our baseline,
TruFor. The findings depicted in Fig. 8 demonstrate that our
MMfusion architecture exhibits good robustness across a broad
spectrum of degradations, maintaining a consistent advantage
over TruFor.

V. EXPLAINABILITY OF IMLD MODELS: QUANTIFYING
THE IMPORTANCE OF DIFFERENT FORENSIC FILTERS

Image manipulation localization and detection as a Machine
Learning task is inherently explainable to some extent, as the
localization map predicted can serve as the explanation for
the detection prediction (e.g. a “manipulated” classification
decision can be explained by “the region shown in this
localization map is predicted to be manipulated”, in an analogy
to the form of explanations produced by e.g. T-TAME [55]
for ImageNet classifiers). Despite this, we investigate how
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Fig. 8: Robustness analysis with regards to Gaussian blur (left) and JPEG compression (right). Higher F1 values are better.

TABLE IX: Average drop in the pixel-level F1 scores (calculated using the ground truth mask for the localization task), before
and after masking each modality with either zeros (above the diving horizontal line) or with another random image (below the
diving horizontal line). Best (higher) scores in bold and second best scores underlined.

Masked Modality → Mask Type Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
NoisePrint → 0 0.0225 0.0236 0.0168 -0.0222 0.2015 0.0484

Bayar Conv → 0 -0.0026 -0.0051 0.0154 -0.0442 0.0253 -0.0022
SRM → 0 0.2367 0.0276 0.0649 0.1376 0.0709 0.1075

NoisePrint → Random Image 0.0225 0.0155 0.0200 -0.0268 0.2277 0.0487
Bayar Conv → Random Image 0.0267 -0.0041 0.0175 -0.0072 0.0385 0.0143

SRM → Random Image 0.2269 0.0393 0.0677 0.1505 0.1487 0.1266

TABLE X: Drop in Prediction Quality (PQ) measure scores using the output of the unmasked prediction as ground truth mask
for the localization task, after masking each modality with zeros (above the diving horizontal line) or with another random
image (below the diving horizontal line). Best (lower) scores in bold and second best scores underlined.

Masked Modality → Mask Type Coverage Columbia Casiav1+ CocoGlide DSO-1 AVG
NoisePrint → 0 0.8215 0.9381 0.8605 0.5689 0.7349 0.7848

Bayar Conv → 0 0.8079 0.9747 0.8291 0.5412 0.9576 0.8221
SRM → 0 0.5521 0.9356 0.7934 0.3636 0.9078 0.7105

NoisePrint → Random Image 0.8340 0.9489 0.8491 0.5889 0.7117 0.7865
Bayar Conv → Random Image 0.7892 0.9726 0.8299 0.5272 0.9317 0.8101

SRM → Random Image 0.5455 0.9231 0.7960 0.3370 0.8051 0.6813

to extend the explainability of our multi-modal models for
IMLD, given the high importance for end-users to be offered
rich insights about the decision-making processes, to allow for
greater transparency and trustworthiness of the classification
decisions. This investigation builds on our preceding ablation
study, which revealed that different forensic filters exhibit
complementary performance characteristics (Sec. IV-C). The
importance of each filter becomes apparent when evaluat-
ing its effectiveness against distinct types of manipulated
images; for instance, some filters are particularly adept at
identifying copy-move forgeries seen in the Coverage dataset,
while others excel with splicing forgeries from the Columbia
dataset, which lacks post-processing. To dive deeper into this,
we employ a perturbation-based explanation method, in the
spirit of methods like LIME and SHAP [56], [57]: we mask
one modality (i.e. filter output) at each time and observe
MMFusion’s resulting drop in performance. Essentially, we

replace the input of the chosen filter with either zeros or a
random pristine image and quantify the importance of the filter
as the drop in localization F1 (higher drop means the filter is
more important). This approach highlights the filter’s reliance
on specific data features. The results are displayed in Table IX.
Our tests across different datasets, each exhibiting different
manipulations (as detailed in Sec. IV-A2), demonstrate that
each filter is tailored to detect particular forgery characteristics,
thereby offering a comprehensive analysis framework for
diverse forensic scenarios.

This explanation method, however, relies on our knowledge
of the ground truth mask for the image. In order to be able to
provide explanations for in-the-wild images, we expand our
methodology and propose Drop in Prediction Quality (PQ)
as a new evaluation measure. Drop in Prediction Quality is
calculated as the F1 measure for the masked prediction using
the original unmasked prediction as the ground truth. For the
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(a) Image w/ splicing forgery (b) Ground Truth (c) MMFusion prediction

(d) NoisePrint++ output (e) Bayar Conv output (f) SRM output

Fig. 9: Visualization of the filter outputs for a DSO-1 dataset image. Top row: (a) Input image with splicing forgery, (b) Ground
Truth mask of the manipulated region, (c) Prediction/Detection mask of MMFusion. Bottom row: (d)-(f) Output of each filter.

(a) Image w/ inpainting forgery (b) Ground Truth (c) MMFusion prediction

(d) NoisePrint++ output (e) Bayar Conv output (f) SRM output

Fig. 10: Visualization of the filter outputs for a CocoGlide dataset image. Top row: (a) Input image with inpainting forgery,
(b) Ground Truth mask of the manipulated region, (c) Prediction/Detection mask of MMFusion. Bottom row: (d)-(f) Output
of each filter.
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(a) Image w/ copy-move forgery (b) Ground Truth (c) MMFusion prediction

(d) NoisePrint++ output (e) Bayar Conv output (f) SRM output

Fig. 11: Visualization of the filter outputs for a Coverage dataset image. Top row: (a) Input image with inpainting forgery, (b)
Ground Truth mask of the manipulated region, (c) Prediction/Detection mask of MMFusion. Bottom row: (d)-(f) Output of
each filter.

new PQ measure, lower value means the masked modality is
more important. We present the blind explanations results in
Table X. We observe that these results are consistent with those
reported in Table IX in highlighting SRM and NoisePrint++ as
the most important overall filters. Specifically, the SRM filter
is the most important for copy-move and inpainting forgeries,
whereas NoisePrint++ is very helpful for recognizing splicing
forgeries. Our hypothesis posits that SRM’s effectiveness
stems from its sensitivity to edge artifacts produced during the
manipulation process, while NoisePrint++ excels at identifying
differences in texture between the source and target image that
exist in splicing forgeries. To provide more insight on what
the output of each filter looks like, a few examples of filter
outputs for images with different manipulations are illustrated
in Figures 9, 10 and 11.

VI. CONCLUSION

In this work, we expand an existing encoder-decoder ar-
chitecture for image manipulation localization and detection
(IMLD) to support multiple forensic filters as inputs. We
examine two filter fusion paradigms: one that generates in-
dependent features from each forensic filter before fusing
them (late fusion), and another that performs early mixing of
modal outputs to produce combined features (early fusion). By
leveraging three forensic filters, i.e. Bayar convolution, SRM
and NoisePrint++, we show that these filters provide distinct
and complementary forensic capabilities and can be effectively
combined, as hypothesized. We then introduce a feature re-
weighting decoder and deploy it alongside early fusion to

propose the MMFusion architecture. Extensive experiments
demonstrate that MMFusion achieves state-of-the-art perfor-
mance across multiple image datasets, showcasing good gen-
eralization and robustness, and its effectiveness in leveraging
diverse forensic artifacts from different filters. Additionally, we
apply MMFusion to video manipulation datasets, also reaching
state-of-the-art performance. Finally, we further assess the
contribution of each forensic filter to the MMFusion model’s
decisions.
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[50] Tiago José De Carvalho, Christian Riess, Elli Angelopoulou, Helio
Pedrini, and Anderson de Rezende Rocha. Exposing digital image
forgeries by illumination color classification. IEEE Transactions on
Information Forensics and Security, 8(7):1182–1194, 2013.

[51] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[52] Adam Novozamsky, Babak Mahdian, and Stanislav Saic. Imd2020: A
large-scale annotated dataset tailored for detecting manipulated images.
In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision Workshops (WACVW), pages 71–80, 2020.

[53] Vladimir V Kniaz, Vladimir Knyaz, and Fabio Remondino. The point
where reality meets fantasy: Mixed adversarial generators for image
splice detection. Advances in Neural Information Processing Systems,
32, 2019.

[54] Jiaming Zhang, Ruiping Liu, Hao Shi, Kailun Yang, Simon Reiß, Kunyu
Peng, Haodong Fu, Kaiwei Wang, and Rainer Stiefelhagen. Delivering
arbitrary-modal semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1136–1147, 2023.

[55] Mariano V. Ntrougkas, Nikolaos Gkalelis, and Vasileios Mezaris. T-
tame: Trainable attention mechanism for explaining convolutional net-
works and vision transformers. IEEE Access, pages 1–1, 2024.

[56] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i
trust you?”: Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 1135–1144, New York,
NY, USA, 2016. Association for Computing Machinery.

[57] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 4768–4777,
Red Hook, NY, USA, 2017. Curran Associates Inc.


	Introduction
	Related Work
	Image Manipulation Localization and Detection
	Video Manipulation Localization and Detection

	Methodology
	Encoder-Decoder Architecture
	Auxiliary (a.k.a. filter) modalities
	NoisePrint++
	SRM
	Bayar Convolution

	Late Fusion
	Early Fusion
	Feature Re-weighting Decoder (FRD)

	Experiments
	Experimental Setup
	Training
	Testing
	Evaluation Measures
	Implementation

	Evaluation and Comparisons on Image Manipulation Datasets
	Ablation Study
	Evaluation and Comparisons on Video Manipulation Datasets
	Robustness Analysis

	Explainability of IMLD models: Quantifying the importance of different forensic filters
	Conclusion
	References

